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 InAs quantum dot laser integration for
optical interconnections

e Quantum Dot broadband SLEDs for
optical coherent tomography

« QD PT symmetry and topological laser

e Summary
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Optical Interconnection
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Optical Interconnection

| o | Optical : Copper
Goal: Drive optical interconnection - -
cheaper and faster! :
Chip ;é:hip §On-Chip<I;1:Te]>rrr(1:onnects
1 mm o

. | billions
el Board to board
. 2 ik A T 10cm-1m <<
Community HBli=C millions c
National A==l CBD
Global 1,000 km
10,000 km
thousands
Distance =—» EA

UMASS

Learning with Purpose LOWELL



Integrated Optical Transceilver

« Silicon photonics is an ideal candidate for optical
interconnections
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Integrated Optical Transceilver

e 14

« Parallel channels are key to scaling bandwidth at low cost

« Silicon photonics passive components have been intensively

LOWELL

studied
 Hybrid I11-V lasers are still the challenges
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QD Lasers on Silicon
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* Integration of InP based QW lasers on Si was the focus

« Quantum dot lasers are advantages with the high
temperature stability and have drawn large attentions
recently
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MBE Growth of InAs QD

As pressure=8x10-° Torr
Terowth (GaAs)=600" C
Terowth (INAS)=500° C
INAs QDs — 2.6 ML

I11:V Ratio= 1:15

Growth rate (INAs)=
0.1ML/s

Growth rate (GaAs)=1ML/s
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MBE Growth of InAs QD

Intensity (a.u)
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e Optimized InAs QDs with density of 8x101° cm=— is achieved

« PL measurements are employed during the QD optimization
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Wafer Bonding
12 oSS R S

e Alignment Free

 No Dislocation and Threading Defaults
* Lower Cost
e Compatible with Si CMOS Integration
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—Top interface
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QD Laser on Si by Pd-Mediated
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GaAs substrate

B

Broad Area Bonded Laser
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2) Deposit Pd

Ridge Bonded Laser
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3) Flip-chip wafer bonding
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Characterizations of QD Lasers on Si
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« State-of-the-art hybrid InAs QD lasers on Silicon is achieved
- Laser exhibit operation at 100°C
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Butt-Joint Coupled Platform

In butt-joint coupling platform, the edge emitting laser emission is
directly aligned with the silicon waveguide input port

The laser and silicon chips were mount on translation stages
The alignment was achieved by maximizing the output power
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Butt-Joint Coupled Platform
n——

Light coupled from QDs Laser

Si ring resonator on SOI Substrate

Light coupled from SOI waveguide
to Fiber

« QD laser is successfully couple in Si
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* Si ring resonators can filter the comb laser emission
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Outline
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e Quantum Dot broadband SLEDs for
optical coherent tomography
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Broadband Laser

The performance of an OCT
system is largely determined
by the broadband source

Broadband
Source

7S

AL oz

Reference Arm
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<+ can
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Volume

e Optical Coherence
77 Tomography (OCT) of a
sarcoma (skin cancer)

Detector

Sample Arm

| H Axial scan data

........... re
axial resolution

"Ss-oct” by Pumpkinegan at en.wikipedia. https://commons.wikimedia.org/wiki/File:Ss-
oct.PNG#/media/File:Ss-oct.PNG
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QD Gain Region
19 oS

Quantum Dots are a good candidate due to having:
Emission from 1.0 to 1.3 um

TTL pulse 0.06
generator
I reference mirror 0.05
E 0.04
3
©
>
balanced g 003
T Q
receiver £
0.02
DAQ fasmmias
~ grating ~—~ 3 =
0.00 ! e - :
35 mm 40 mm H_r 1100 1125 1150 1175 1200 1225 1250 1275 1300 1325 1350 1375 1400
polygon scanner ﬁ{}l’?}ﬁ A, nm
sample

* Haet. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205-1206
e Thorlabs Inc.
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QD Gain Region
i

Quantum Dots are a good candidate due to having:

Broadband -> A-scan resolution (AZ=0.44-A,%/AA)

TTL pulse 0.08
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sample

* Haet. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205-1206
e Thorlabs Inc.
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QD Gain Region
n——

Quantum Dots are a good candidate due to having:

Long Coherence length -> B-scan resolution
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* Haet. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205-1206
e Thorlabs Inc.
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QD Gain Region
P

Quantum Dots are a good candidate due to having:

Grown on GaAs substrates for DBR integration

TTL pulse 0.06 Smnion
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* Haet. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205-1206
e Thorlabs Inc.
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QD Gain Region
23 S

Quantum Dots are a good candidate due to having:
- Emission from 1.0to 1.3 um
- Broadband -> A-scan resolution (AZ=0.44-A,%/AA)
- Long Coherence length -> B-scan resolution
- Grown on GaAs substrates for DBR integration
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generator i i
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intensity, a.u.

» grating ~ 5% B
0.00 PE—
35mm 40 mm -— 1100 1125 1150 1175 1200 1225 1250 1275 1300 1325 1350 1375 1400
polygon scanner ﬁﬂh@ 2, nm
sample

* Haet. al., ELECTRONICS LETTERS Vol. 49 No. 19 pp. 1205-1206

e Thorlabs Inc. UHASS
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Dip-free Broadband QDs
o — R R

Mixed QD layers
Combination

Gain (dB)

Wavelength

p

1.3um

« Different QD structures can be grown together to eliminate
the spectrum dip
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Dip-free Broadband QDs

B

EL Intensity (arb. units)

0K ' 118K
wavelength nm

3

« Different QD structures can be grown together to eliminate
the spectrum dip
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Chirped QDs with InAlAs SRLs

. . FAAN Mixed ground
- 4 ¥ state emission
state emission ; \
§ Y
’I N QD1GS } QD2GS % QD3 GS
| ] \ y [ )
§o :
§ %
I
QD1ES # QD2ES ‘aons ES

Y

By using the novel QD structures, the ground and excited
state emission can be separated in the mixed QD structures
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Chirped QDs with InAlAs SRLs
o ' S SEay  Sa—
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- 7 Stack QD

PL Intensity (a.u.)

- 113 meV —-l

1080 1200 1320 1440

LOWELL

Wavelength (nm)

« By changing the SRL design, the GS and ES emission
wavelengths can be tuned
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Chirped QDs with InAlAs SRLs
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« By changing the SRL design, the GS and ES emission

1100 1200 1300 1400

wavelengths can be tuned
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QD SLEDs/Gain Chip

2.0

Power (dBm)

800 1000

« By changing the SRL design, the GS and
wavelengths can be tuned
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Broadband QD External Cavity Laser

SLED

N =

€0t order beam

1st order beam

dfp—

piezomotor ==

fiber OSA

« QD external cavity laser is setup by using the wavelength selective
diffraction grating
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Broadband QD External Cavity Laser

— 120 mA
— 140 mA
— 160 mA
— 180 mA
— 200 mA

Intensity (dBm)
&

T1200 1230 1260 1290
Wavelength (nm)

« QD external cavity laser is setup by using the wavelength selective

diffraction grating
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Outline
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« QD PT symmetry and topological laser
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Parity-time Symmetry in Quantum

Mechanics

PT Operators:

ﬁ_
ﬁ
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=
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Non-broken PT phase

A

>

Condition:
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Exceptional Point

(/\ A
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1 X — +X

o

V(X) =V (=X)

PT Symmetry satisfies:

(3,PT] =0

Broken PT phase
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From Quantum Mechanics to Optics
34 oSS

Maxwell Equation in 2D waveguide

V2@ + kée(x,v)p = B2 ¢

Schrodinger Equation

2mV (x,y) 2mkE
P — e = — =y
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PT Symmetric Optics
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PT Symmetric Optics
36 S

£(X) = & (=X)

Loss Gain
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What Can PT Symmetric Optics Do?

Broken-symmetry mode pair PT-symmetric A 0 B
double ring ol — 50F
) 2 =53
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H.Hoedai, Science , Vol346 6212 (2010).

L. Feng et. al., Science, Vol 346, (2014).
A. Regensburger et. al., Nature. 488, (2012).
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High Power Laser Application

Xerographic printing Optical data storage

Communication
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Mode Filtering
39 oS

SPATIAL FILTER
LENS \ yﬂﬁ@ﬁ
Y
1
S
BAL -
k=t =% 1 = surworx
ADJUSTABLE

 Tapered Area to amplify fundamental mode alone
« Spatial filter to increase the loss of higher order modes

 Higher order modes occur in high pumping level KA

https://www.photonics.com/EDU/Handbook.aspx?AlD=25099 Lumsl_s[_
S.Wolff. Et. al., OE, Vol 5, No 3 (1999)

Learning with Purpose



Model of Finite Element Method
Simulation

e

Cross section

Top Cladding

Active
region

Bottom Cladding

e Active region dimension:
» Thickness=300 nm
» Width=60 pm
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FEM Simulation

o w
| T

Im(B) (cm™)

w
1

Gain=Loss
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0 N TR 20
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» Before EP, electric field oscillates KA

« After EP, mode bifurcates, either lase or absorb ,_u,!‘!.ﬁs,'_s,_
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FEM Simulation
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« Each mode has separate EP
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FEM Simulation
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Single mode
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« Each mode has separate EP M

e Single mode operation window 5 to 15 cm? UMASS
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Device Fabrication

SEM image of the laser facet 3D model of PT symmetric laser

N* GaAs Substrate

Substrate
Substrate

1) P Metal Deposition 2) H+ Ion Implant 3) Mesa Wet Etch

H* d H+ I H

Substrate

Substrate Substrate

N metal

4) Passivation PECVD 5) Interconnection Deposition 6) N Metal Deposition
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Electroluminescence and L-1
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 The gain (loss) current is 400 (O to 120) mA pulsed

current of 1% duty cycle and 1 (10) us pulse width
* The loss current always keeps below I,

* Ji4, remains stable
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Near- and Far- Field Characteristics

d 100
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. OSSR
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. -1
Waveguide Loss (cm )

50

Region |l

A trend of milti=>single->multi modes is observed (A

which very well matches simulation UMASS
Learning with Purpose LOWELL
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Summary
M —

 INAs Quantum Dot laser and SLEDs Is an
Ideal candidate for integrations

« PT Symmetry Is a novel concept for high-
power laser applications

 Packaging Is an alternative for
Integrations

Learning with Purpose LOWELL



Acknowledgement
g

Current Members: Collaborators:

Prof. Viktor Podolskiy (UML)
Prof. Hualiang Zhang (UML)
Prof. Stefan Preble (RIT)
Prof. Xuejun Lu (UML)

» Prof. Zhao Hong
(visiting professor,
Qigihaer University)

* Prof. Yuanyu Wang
(visiting professor,
Talyuan University of
Technology)

» Ruizhe Yao (PhD)
» Hang Li (PhD)

= Johnson Silverio (B.S)

Learning with Purpose LOWELL



Acknowledgement
g—

Current Members:

Ruizhe Yao (PhD)
looking for a job!

Ruizhe yao@student.uml.edu QASS

LOWELL

Learning with Purpose



Acknowledgement

e Work was done CRF at UMass Lowell

« Work was supported by NSF under grant No. ECCS-
1309230 and commonwealth of Massachusetts

Core Research Facilities
Shored Laboratores & Services at UBlass Loswedl

74

UMASS

LOWELL

Learning with Purpose



Optimization of INAs QDs

= ImAs QDson Gads
= g affeut Gads

r—r———

(c) Hﬁ'ﬂnllnmh (nm) 1

 InAs QDs grown on offcut GaAs substrates show improved PL
intensity and improved dot uniformity
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Guo et. al. Journal of Crystal Growth 451 (2016) 79-82



Optimization of INAs QDs
52 oo R S
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 The thickness and Il1-V ratio of the LT GaAs layer is playing a
critical role of the dot performance

LOWELL

Guo et. al., Journal of Vacuum Science & Technology B, 34(4), 041223, (2016)
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Chirped QDs with InAlAs SRLs

PL Intensity (dB)

_Eu 1, = & 1 & I A 1 A i " 1 " i - il - i
900 1l]'l]D 1100 1200 1300 1400 0 10 20 30 40 50
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« By changing the SRL design, the GS and ES emission
wavelengths can be tuned
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Lasing Condition
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 Hard to maintain gain=loss all the time
 Gain is clamped
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Fix Gain and Tune Loss
= EEEEnE 2 Ay a0
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Mode Selection In PT Laser

A | B
e Gain=4.95 cm™
o S5f (1R L TP Cladding
: 0 ] Waveguide €
% P TE Bottom Cladding
E D
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E
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Region 11l & IV is the single Transverse-mode
operation window

Learning with Purose. 1 E71 1S NOt observable until into region V



FEM Simulation
"
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Coupled Waveguide Theory
58 oS

da ) ;
d;n — lﬁmamﬂkmbm"'gmam

db,

iz — iﬁmbm"'i’cmam"'gmbm
o = 2
m Km

° pm <1, B, Is real, PT is not broken

° pm>1,, B, 1S complex, PT is
spontaneously broken
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Coupled Waveguide Theory
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da
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° pm <1, B, Is real. PT is not broken. Gain (cm )

° pm>1,, B, 1s complex. PT is
spontaneously broken.
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° K, iIncreases with m.
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Device Fabrication

SEM image of the laser facet 3D model of PT symmetric laser

N* GaAs Substrate

Substrate
Substrate

1) P Metal Deposition 2) H+ Ion Implant 3) Mesa Wet Etch

H* d H+ I H

Substrate

Substrate Substrate

N metal

4) Passivation PECVD 5) Interconnection Deposition 6) N Metal Deposition
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Electroluminescence and L-1
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 The gain (loss) current is 400 (O to 120) mA pulsed

current of 1% duty cycle and 1 (10) us pulse width
* The loss current always keeps below I,

* Ji4, remains stable
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Near- and Far- Field Setup

« Schematic of near-field measurement

;J)

PT Symmetric g ii——
laser T

Focus Lens Near Infrared Camera

« Schematic of far-field measurement

PT symmetric o N
laser ’

Beam Profiler
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